|
|
The purpose of this test is to check shell elements with double curvature. You will use 2D meshes. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
|
Reference: MAC NEAL R.H., HARDER R.L., A Proposed Standard Set of Problems to Test Finite Element Accuracy, Finite Element Design, Vol.1, pp.3-20, 1985. |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Radius: |
![]() |
| Angle: θ = 18 deg |
|
|
Thickness: |
|
|
Equation: |
|
|
For symmetry reasons, only a quarter of the hemisphere is modeled. The given results are the same for a quarter or for the whole hemisphere. |
|
Young Modulus (material): |
|
|
Poisson's Ratio (material): |
|
|
Mesh Specifications:
See the values in the table of results. |
|
|
Restraints (User-defined):
|
|
|
Loads (Distributed force): F=1 (outward at A, inward at D) |
ResultsThe analytical solution is:
At point A, x-displacement is 94 mm.
The results correspond to the x-displacements at point A.
The table below presents the analysis results.
The normalized results (computed results divided by analytical solution)
are listed.
|
Nodes |
Values |
|||||||
|
Linear |
Parabolic |
Linear |
Parabolic |
|||||
|
|
|
|
|
|||||
|
Computed results |
Normalized results |
Computed results |
Normalized results |
Computed results |
Normalized results |
Computed results |
Normalized results |
|
|
3 x 3 |
105.9 |
1.127 |
95.33 |
1.014 |
71.17 |
0.757 |
21.82 |
0.232 |
|
5 x 5 |
98.19 |
1.045 |
91.68 |
0.975 |
95.76 |
1.019 |
77.12 |
0.820 |
|
7 x 7 |
96.36 |
1.025 |
94.06 |
1.001 |
96.39 |
1.025 |
93.00 |
0.989 |
|
9 x 9 |
95.53 |
1.016 |
93.55 |
0.995 |
95.38 |
1.015 |
94.36 |
1.004 |
|
11 x 11 |
96.50 |
1.027 |
93.87 |
0.999 |
94.89 |
1.009 |
93.72 |
0.997 |
|
13 x 13 |
93.15 |
0.991 |
93.21 |
0.992 |
93.97 |
0.999 |
93.04 |
0.989 |
To Perform the Test:
The hemispherical_shell_concentrated_loads_13nodes_tr6.CATAnalysis document presents a complete analysis of this case, computed with a mesh formed of parabolic triangle elements (TR6).
The hemispherical_shell_concentrated_loads_13nodes_qd8.CATAnalysis document presents a complete analysis of this case, computed with a mesh formed of parabolic quadrangle elements (QD8).
To compute the case with other types of elements and number of nodes, proceed as follow:
Open one of the CATAnalysis documents.
Enter the Advanced Meshing Tools workbench.
In the specification tree, double-click on the mesh.
The Global Parameters dialog box appears.
Select the Linear element type.
Compute the case in the Generative Structural Analysis workbench.
![]()